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Aligned-fields magnetogasdynamic wakes 
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Graduate School of Aerospace Engineering, Cornell University, Ithaca, New York 
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The effect of compressibility is included here in a study of wakes created in two- 
dimensional, steady, aligned-fields, magnetogasdynamic flow past obstacles. The 
gas is assumed to be viscous, resistive, and thermally conducting. With the Oseen 
type of approximation as well as the magnetogasdynamic boundary-layer 
approximation, a great simplification in the formulation of wakes results. The 
boundary-layer equations, although linearized, still retain the coupling between 
the velocity, the magnetic, and the temperature fields. The solution of the 
magnetogasdynamic wake, in general, is a superposition of three individual- 
wake components, each satisfying a diffusion type of equation. Only one of them 
is capable of extending upstream. Hence the wake picture is generally charac- 
terized by a conventional downstream wake with also the possibility of the 
existence of an upstream one. 

To be sure, the general features of the magnetogasdynamic wakes in aligned- 
fields flows are similar to those of an incompressible fluid; however, the flow now, 
instead of just being subalfv6nic, must be subcritical for the upstream wake to 
occur. That is, the flow condition corresponding to the occurrence of the upstream 
wake is such that the sum of the square of the Mach number M, and the square of 
the Alfvh number A ,  is less than unity. Evidently it is the mechanism of 
magneto-sonic-wave propagation that modifies the transition of wakes from the 
Alfv6nic point A ,  = 1 (for an incompressible fluid) to the subcritical arc 
A$, + M2, = 1 in the Taniuti-Resler diagram. 

1. Introduction 
The remarkable behaviour of magneto-fluid-dynamic wakes has attracted 

the attention of many authors. Theoretical studies (Hasimoto 1959, 1960; 
Gourdine 1960; Glauert 1963; Clauser 1963) have revealed that in the steady, 
uniform, magnetohydrodynamic (incompressible) flow past obstacles of an 
unbounded fluid that is viscous and electrically conducting, there exist, in general, 
two wakes extending, respectively, in the directions of Urn i- a, and U, -a,, 
where U, is the free-stream velocity, and a, = H,/(47rpm)4, the Alfvkn velocity 
based on the unperturbed magnetic-field vector and density a t  infinity. In  
particular, if the flow is aligned-fields and subalfv6nic; i.e. if U, and a, are parallel 
or anti-parallel, and la,] > I Urn[, the surprising upstream wake occurs. Moreover, 
the remaining trailing wake disappears in the limit of either vanishing viscosity 
or resistivity. Lately a mechanism accounting the disappearance of a wake in this 
limit was proposed (Sakurai 1963). Results from the experimental side are 
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equally exciting. An experiment on the magnetohydrodynamic flow past a 
Rankine body conducted in a mercury tow tank (Ahlstrom 1963) seems to have 
confirmed the incompressible, aligned-fields theory; an upstream wake appears 
provided the flow is subalfvknic. 

Although magnetohydrodynamic wakes can mostly be considered as well 
known, their generalizations to include the effect of compressibility remains, to 
the author’s knowledge, to be carried out. Using the Friedrichs pulse diagram, 
Sears (1960) pointed out that in the case of aligned-fields flow of an inviscid, 
compressible fluid of finite electrical conductivity, the transition of the down- 
stream inviscid wake to the upstream, and vice versa, should take place at flow 
conditions corresponding to points on the subcritical arc A%+M2, = 1 in the 
Taniuti-Resler diagram. The Alfvbn number A ,  is defined as the ratio of the free 
stream speed to the Alfvkn speed at infinity; the Mach number M, is the ratio of 
the free-stream speed to the sonic speed there. The same prediction was also 
mentioned by Resler & McCune (1960). To help decide whether these phenomena 
are real, we want to study them in a model having many of the properties of real 
conducting fluids, especially gases. Therefore, considerations of viscosity, 
thermal conductivity, resistivity, finite Prandtl number, and finite magnetic 
Prandtl number seem desirable. These were studied by Fan (1963). 

Thus the intention of the present study is to investigate the magnetogas- 
dynamic wakes created in the steady, uniform, two-dimensional, aligned-fields 
flow of an unbounded, ideal gas past impermeable bodies. The gas is treated as a 
single fluid and is assumed to be not only resistive but also viscous and thermally 
conducting. Furthermore, the gaseous particles are supposed to collide frequently 
enough everywhere in the flow so that the tensor character of the transport 
coefficients is insignificant. Turbulence is ignored. To analyse the set of linearized 
magnetogasdynamic equations without further simplification would be formid- 
able, if not impossible. Even in limiting cases, e.g. aligned-fields flows with zero 
resistivity, the magnetogasdynamic fields fail to split into individual modes. 
However, for flows at large magnetic Reynolds number R, = 4n-rcrUWL, large 
Reynolds number Re = p, U, L / p ,  and large PBclBt number P, = C,p, U, L/K, the 
diffusion due to resistivity, viscosity, and heat conductivity is important only in 
narrow zones within the flow field. Standing Alfvkn waves are diffused and 
damped. The current-and-vortex sheet that surrounds the body in the case of 
aligned-fields flow is expanded into a thin magnetogasdynamic boundary layer 
of large vorticity and current. Hence a great simplification to the flow problem 
can be achieved through the use of the familiar boundary-layer approximation. 
At distances far from the body vorticity and current so generated propagate 
away in a thin wake or wakes and decline in intensity. 

It should be pointed out that for aligned-fields magnetohydrodynamic flows 
theories leading to flow pictures different from the above-described have been 
proposed (e.g. Chester 1961; Ludford & Singh 1963). This apparent discrepancy 
remains unresolved (Stewartson 1963). The present investigation making use of 
the concept of aligned-fields boundary layer may shed some light on the problem. 
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2. Aligned-fields boundary-layer equations and formulation of wakes 
The boundary-layer equations that will be presented in this section are 

applicable for steady, aligned-fields flows within boundary layers (including 
wakes) where the electromagnetic-body force is comparable with the viscous 
force. These categories of steady flows include (i) flows a t  large Re with fluids of 
magnetic Prandtl number Pr, = O( l),  where Pr, = R,/R,, and (ii) flows at large 
Re with infinite Pr,. Clearly in the former case the viscid and the inviscid layers, 
being about the same thickness, are undistinguishable and, in fact, form a single 
layer of large vorticity and current, while in the latter case, in principle, the 
inviscid layer has shrunk to zero thickness and only the viscous one remains; 
however, the condition of the frozen-in magnetic field together with the non-slip 
condition at the body surface enables us to conclude again that electromagnetic 
and viscous forces are comparable. (The current sheet here is diffused by vis- 
cosity.) It should be noted that for real conducting fluids the fluid property Pr, 
has very small value and Sears’s boundary-layer equations are appropriate 
(Sears 1961). Although the limit of vanishing Pr, represents very realistically the 
physical situation, it is of theoretical importance to understand how vorticity 
and current are convected in the far-flow field in fluids with Pr, a t  other values 
of interest, namely infinite Pr, and Pr, = O(1). 

Assuming also that the conventional Prandtl number of the fluid Pr is O(l),  
an order-of-magnitude analysis of the magnetogasdynamic equations leads 
immediately to the boundary-layer equations. The procedure is analogous to that 
used in obtaining the boundary-layer equations of non-conducting fluids except 
the magnetic-field-strength vector at the body surface is not known a priori in 
the case Pr, = O(1). As in the case of the inviscid boundary layer (Sears 1961), 
it is then further assumed that the magnitude of this magnetic field is at most of 
the order of R;* times the corresponding value given by the inviscid, ideal 
conducting solution. The body is assumed to be an insulator. Let and ?j be the 
boundary-layer co-ordinates, i.e. co-ordinates measured along the body surface 
and perpendicular to it. The velocity (U, V) and the magnetic-field vector (gx, a,) 
are decomposed in components along these directions. p denotes the density of 
the gas, p the pressure, T the temperature, .p the coefficient of viscosity, u the 
electric conductivity, R the gas constant, C, the constant pressure-specific heat, 
and K the heat conductivity. The total pressure P is defined as the sum of the gas 
pressure and magnetic pressure, + R2/877. pl(Z) represents the total pressure at  
the body surface given by inviscid, ideal conducting flow. The steady, two- 
dimensional boundary-layer equations in electromagnetic units, with the 
magnetic permeability of the gas equal to one, are then as follows (Pai 1962): 

a p q a ~  + apqag = 0, 

a B , p  + aB,lag = 0, 

(1) 

(2) 

P = P,(Z), (4) 
28-2 
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ji = FRT. (7) 

Undoubtedly, the existence of irreversible transport mechanisms ensures that 
all disturbances originating in finite regions within the unbounded fluid are 
damped out completely at distances infinitely remote from these sources. There- 
fore there must exist a vast flow region extending inward from infinity, where the 
flow can be well described as a small perturbation of the uniform flow at infinity. 
Diffusion processes are significant there only in narrow zones called wakes, or 
diffuse waves. Vorticity and current confined in wakes are at least an order of 
magnitude greater than those outside. For fluids with Pr, = O( l),  or Pr, = co, 
the inertial, viscous, and electromagnetic-body forces are comparable and the 
boundary-layer approximation just mentioned prevails. It is sensible to postulate 
that in compressible flows the width of a wake also grows parabolically. Hence 
the variation of the total pressure along a wake can be overlooked in consistency 
to the boundary-layer approximation. 

The non-dimensional version of equations (1) to (7) for wakes, linearized to 
first order in perturbed quantities, are 

aplax + aupx  + aqay = 

aH,/ax + a ~ ~ a y  = 

p - p - 7  = 0, (14) 

where y is the ratio of the constant-pressure and the constant-volume specific 
heats of the gas. The dimensional quantities are non-dimensionalized respectively 
by their characteristic values; e.g. x = Z/L, 1 + p  = plpm. Furthermore, the 
parameter Re has been absorbed in the normal boundary-layer co-ordinates, the 
normal velocity, and the normal magnetic-field components through magnifying 
them individually by a factor of Rj, e.g. y = R,&B/L, Hy = Rta,/a,. Viscous 
dissipation and Joule heating are second-order quantities and are neglected in 
equation (13). 
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The resulting differential equation in any single perturbed variable, say F ,  
from equations (8) to (14) is 

with the observation of the boundary condition that derivatives of all orders of 
the perturbation quantities vanish identically at distances infinitely far from the 
obstacle. 

It is of great significance that in all physically possible situations, i.e. Pr, > 0, 
Pr > 0, and y > 1,  the sixth-order differential operator can be factored into a 
product of three diffusion-type operators W,, W,- W, with real coefficients. Only 
one of the operators, Wl-, changes its character of diffusion as the sum A2, + M2, 
alters across the value unity. In  the limit of vanishing Mach number, ( 15) contains 
properly the incompressible result, (e.g. Gourdine 1960). If Pr = 1, the factoriza- 
tion is particularly simple and (15) can be written as 

a2  
W - - ---Am2[Prm(A2,+yM2,)+A% ay2 t-([Prm(A%+yJf$)+&l2 

a 
ax' - 4PrmA2,(A2, + M2, - l)}&] - 

and W, = a y a g  - alax. 
Clearly, it is the operator W,- that causes negative diffusion when the flow becomes 
subcritical. 

Similar differential equation for wakes in flows involving gases of infinite Pr, 
(viscous but perfectly conducting gases) can be obtained by formally taking this 
limit in (15). The result is 

K + K - F  = 0, 

where the operators W,, denote 
(17) 

a2  
- - &(A: +yM2,)-l [A: + yM2, + Pr(A% + M % )  - 1 5 ([A: + yM% 
aY2 

a + Pr(A2, +ill&) - 112- 4Pr(A2, + yM2,) (A2, + M2, - I)}&] %. 

Again the coefficients in W,, are real for all physically possible circumstances and 
only Wl- is capable of changing its character of diffusion across the flow condi- 
tions A2, + N :  = 1. Furthermore, if Pr = 1, (17) becomes 

A2,+M2,-l a (6-g) (&- A2,+yM2, %) F = 0. 

Of laboratory interest is the limiting case when resistivity alone is assumed to 
play the role of diffusion-the so-called inviscid wake. Neglecting the viscous 
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term in equation (10) and replacing (13) and (14) by the isentropic relation 
p = 'yp, the resulted inviscid-wake equation is simply 

W,-P = 0, (19) 

where 
a2 A2,+M:-1 a K- = v- ___- A2, - ax' 

Analogously, in equation (19) the parameter R, has been made implicit in the 
stretched y co-ordinate, etc. If the gas is allowed to exhibit thermal diffusion 
comparable to resistive diffusion while retaining its inviscid nature, it  can be 
shown that the resulted differential operator is now a product of two diffusion 
operators with real coefficients, and again only one of them appears with negative 
diffusion at subcritical flows. 

Nothing definite can yet be concluded at this stage, since (15), (17), and (19) 
generally yield necessary conditions that solutions for wakes must satisfy. 
Nevertheless, they all indicate the existence of a mechanism of negative diffusion 
at subcritical-flow rbgimes, and therefore strongly suggest the possibility of an 
upstream wake in compressible, aligned-fields flows. In  fact, it will be shown 
later that solutions of this type do exist. It is of some interest to note that the 
orders of these differential equations are directly proportional to the number of 
diffusive mechanisms exhibited by the assumed gas. 

3. Similarity solutions for wakes 
To demonstrate theoretically the existence of an upstream magnetogas- 

dynamic wake, a class of similarity solutions will be obtained for equations (8) to 
(14). As will be seen later, the similarity solutions represent wakes in aligned- 
fields flows past a thin, symmetrical, cylindrical body at zero incidence. The body 
must also be symmetrical in thermal and magnetic boundary conditions. 
Evidently, effects of the distant body on the wake profiles should be characterized 
at least to some extent by the gross aerodynamic force (wave drag excluded) 
experienced by the body and the gross energy exchange between the body and 
the fluid. That such characterization is sufficient, namely that the gross quanti- 
ties determine completely the wake profiles, can be easily seen in conventional 
fluid dynamics, as the temperature and velocity fields are uncoupled in the 
linearized boundary-layer approximation even in compressible flows. Con- 
trarily, the resistive diffusion in magneto-fluid-dynamics, if present, makes the 
characterization incomplete either by introducing additional wake components 
or for lack of a mechanism analogous to viscosity in producing the drag. There- 
fore in the attempt to discuss the magnetogasdynamic wakes without knowing 
in detail the near flow field, a degree of arbitrariness in the final wake profiles is 
unavoidable for certain cases. Disregarding this, the similarity solutions do serve 
the purpose of showing the appearance of an upstream wake at subcritical flows. 

The similarity variable y/x* for viscous wakes in conventional fluid dynamics 
finds its application also in aligned-fields magnetogasdynamics-the slight 
modification being that the absolute value of the streamwise co-ordinate 1x14 
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must now be taken in the denominator. The origin of the co-ordinate system is 
assumed to be located somewhere within the body. Let 

(%7,H,) = IXI-+(f,s,h), (20)  

wheref, g, and h are functions of the parameter 7 = y/Ixl* only. It can easily be 
seen that the mathematical problem now reduces to the determination off, g, 
and h which satisfy simultaneously the following three ordinary differential 
equations with appropriate boundary conditions and constraints : 

-sgnxy(f- A G ~ ~ )  = 2{f'-f'(O),} ,  (21)  

where the prime denotes differentiation with respect to r. Upper and lower signs in 
subscripts are appropriate, respectively, for sgn x = d 1x1 /dx = 1 and sgn x = - 1 .  
Other perturbed quantities, namely p ,  p, v, and Hv can be expressed in terms of 

To satisfy the Ohm's law (equation ( 2 2 ) ) ,  h'(O), must vanish for all finite values 
of Prm. If the 'steady ' state is reached, it is necessary that solutions for wakes be 
compatible with three constraints: (I) The surface integral of the momentum- 
flux tensor over the surface to a control volume enclosing the obstacle, which is 
everywhere distant from the obstacle, should be independent of the volume 
chosen and numerically equal to the aerodynamic force exerted by the fluid on the 
body but opposite in sign. (11) SimilarIy, the surface integral of the energy-flux- 
density vector is invariant with respect to the volume chosen and equal to the net 
energy transfer from the body to the fluid. (111) Furthermore, an analogous 
condition must exist in relating the moment acting on the body to the surface 
integral of the moment of the momentum-flux tensor. Since the flow outside the 
wakes is considered to be ideal, constraints (I) and (11) lead to 

f, 9, and h. 

Re+C, = - (sm --m I f+(Y--  l)-1M"29ldT}++(Im --m Cf+(Y- 1)",2Sldll) - 9 (26) 

where only leading terms have been kept and the limits of integration have been 
extended from the edges of the wakes to infinity. To justify the extension, the 
class of functions that are admissible to the solutions forf, g, and h must not only 
assure the existence of all the integrals but also die out rapidly enough at large 171. 
CD, and C,, are, respectively, the drag and the lift coefficients contributed by 
wakes, while the non-dimensional coefficient C, represents the net energy 
transfer between the fluid and the body. The subscript '+' denotes integration 
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over a section across the downstream wake at x $ 1; '-' the upstream wake a t  
x < - 1. From (24) and (26) i t  is clear that u, H,, and T in their similarity forms 
yield values of C,, and C, independent of the choice of surface of integration. The 
total lift is presumably related to the circulation and the magnetic circulation 
around the body. In  view of the postulate of parabolic-wake growth, C,, must 
be negligible in comparison with the total lift coefficient. At first glance this can 
be achieved either by limiting the applicability of the similarity solutions at large 
enough 1x1 or by requiring the integrals in (25) to vanish identically as in the 
cases of symmetrical flows where the total lift coefficient itself vanishes. The 
vanishing of the integrals is in agreement with the 'symmetry' condition that 
demands f, 9, and h to be even in 7, provided the axis of symmetry is now taken 
to be the x axis. Furthermore, wake profiles with f ' ( O ) +  = g' (O) ,  = h'(O), = 0 
are compatible with Ohm's law, the momentum equation, and the energy 
equation. The constraint (111), however, restricts the similarity solution to 

flows that are symmetrical, as integrals of the type 1x14 rfdy, for example, 

appear in the expression for the moment coefficient. It can easily be verified that 
all these integrals vanish again iff, g, and h are even. Finally, the boundary 
condition at infinity (in the physical plane) states that all perturbation quantities 
and their derivatives must vanish there. 

.L:m 

(i) Wakes without resistive diffusion 

We shall consider first solutions for large Re and infinite Pr, with (1) Pr = 1, and 
(2) arbitrary Pr, i.e. Pr = O( 1). 

With f ' ( O ) +  = g'(O),  = 0 a straightforward manipulation of equations (21), 
(22), and (23) gives the following solution for the case Pr equal to one: 

A ,  and A ,  are constants of integration. The factor sgn x that appears in equations 
(27), (28), and (29) must take the value 

+ 1  if A:+M:>l and -1 if A2,+M2,<1 .  

That is, wake components containing sgn x in their exponents extend upstream in 
subcritical-flow r6gimes. f, g, and h are clearly even functions of y. The constants 
A,  and A ,  are related uniquely to CDw and C, through (24) and (26). The relations 
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The rate of energy exchange between the gas and the body as will be noted 
below has intricate effects on the structure of aligned-fields magnetogasdynamic 
wakes. Let cE denote { 1 + (y  - 1)-l M z 2 ]  CDw. If the body acts as an energy sink 
with a rate of absorption C, = c,, current diffusion occurs nowhere in the far 
flow field. In  other words, there is no perturbation in the magnetic field. The 
wake structure is conventional, as if the magnetogasdynamic interaction were 
totally absent. Moreover, in the limit C, = cE the upstream wake disappears at 
subcritical flows. Now, if C, > cE there is a magnetic-field increment in contrast 
to the deficiency that occurs when C, < cE; hence current, if any, at any point in 
the wake region flows in opposite directions depending on C, 2 cE. The resolution 
of the solutions into up- and downstream portions at subcritical flows enables 
each wake component to be examined individually. The following remarks are 
restricted to subcritical flows: (1) Vorticity is shed away both up- and down- 
stream, whereas current generated due to the presence of the body can only 
diffuse upstream. The current-free trailing wake vanished in the limit C, = 0. 
( 2 )  The downstream wake enjoys both velocity and temperature increments 
when the gas gains energy steadily from the body, i.e. CE < 0. Therefore the 
density of the gas in the trailing wake must suffer, in proportion, a deficiency so 
that the gas pressure is constant and the condition of the frozen-in magnetic field 
is fulfilled. The reverse (C, > 0 )  is also true. (3) As for the upstream wake, the 
velocity shows an increment or a deficiency corresponding to C, > cE or C, < CE. 
The temperature there behaves oppositely. (4) As a direct consequence of 
positive drag, the present analysis denies the existence of wakes with velocity 
increments both up- and downstream or with temperature decrements upstream 
and increments downstream. 

For arbitrary Prandtl number, it  can be verified that the solution takes the 
form f =  A,exp( -K+r2)+A4exp(-Ksgnq2) ,  (32) 

g = [(A%+yM2,) (4K+- 1)+ 1]A,exp ( -K+q2) 
(33) 

h = A2,[(1- 4K+) A,exp ( -K+r2) + (1 - 4KJ A4exp ( -K- sgnxy2)], (34) 

where 4K, are, respectively (except for sign) the coefficients of the x-derivatives 
in the operators W,, in equation (17). The K+-wake component always travels 
downstream, while the K--wake component propagates upstream when 

+ [(A: + yM2,) (4K- - 1) + 11 A,  exp ( - K- sgn xr2), 

A2,+M2, < 1. 

The constants of integration A, and A, are related to C,, and C, as follows: 

(A: + ~ 2 ,  - 1) [(A: + yM2,) (sK+ - 1) - Pr(A% + M2,) + I ]  A ,  

= (A% +yM2,) [4(A2, + y M % )  K- - (A: + M2, - I)] [K+(Re/n)])C,, 

T (y  - 1) H2, [Pr(A2, + YE) (A% + M2, - 1) K-(Re/n)]* C,, 

T ( A % + M ~ - l ) [ ( A % + y M 2 , f ( S K + -  1)-Pr(A%+M2,)+1]A4 

- (y - 1) M2,[Pr(A: + yM2,) IA2, + M2, - 1 I K+(Re/n)]i CE, 

(35) 

= (A2,+ylM2,)[4(A2,+yM2,)K+-(A2,+M2m- 111 [IK-J(Re/n)IiC,, 

(36) 
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where upper signs are appropriate for A2,+M: > 1 and lower signs for 
A2, + M2, < 1. If Pr = 1, equations (32) to (36) check properly with the previous 
solution for Pr = 1. 

For gases with Pr + 1, it  should be noted that current-free flow in wake 
regions is no longer possible. Associated with each temperature- (or velocity-) 
wake component, there exists also a magnetic one, in general. A,  (or A,) vanishes 
if C, is such as to cancel the contribution of C,, in the right-hand side of 
equation (35) (or equation (36)). Hence, by properly adjusting the rate of net 
energy exchange between the body and the gas, subcritical flows with only an 
upstream wake or with only a downstream wake can be realized as special cases 
in gases with infinite conductivity. Further effects of C, on the structure of 
wakes can be discussed along the same line as before. 

The unique determination of the constants of integration in terms of the 
aerodynamic coefficients C,, and C, implies that the asymptotic behaviour of 
the flow fields in wakes is independent of the details of the near-flow field, e.g. 
the shape of the body. It will become clear later that this statement is invalid in 
cases when R, is finite. 

(ii) Wakes with resistive &flusion 
We shall consider under this subtitle aligned-fields magnetogasdynamic wakes in 
gases ( 1) with resistive, viscous, and thermal diffusions mutually comparable, 
i.e. Pr, and Pr both of the order of unity; and (2) with resistive diffusion only, 
namely Pr, = 0. 

If Pr, is of the order of one and Pr is equal to one, the solution for wakes can 
easily be obtained: 

(37) h = A2, [( 1 - 4L+) A ,  exp ( - L+r2) + (1 - 4LJ A6 exp ( - L- sgn z9)], 

f = A,exp ( -  $r2) +A,exp ( -L+r2) +A6exp ( -L-sgnq2), (38) 

g = A,exp(-fr2)-(y-1)M~CAgexp(-L+.r12)+A6exp(-L_sgn2r2)]. (39) 

The expressions a, are, respectively (except for sign) the coefficients of the 
x-derivatives in the operators w,, in (16). A,, -46, and A ,  are constants of 
integration. 

Clearly, the similarity solutions (37), (38), and (39), demonstrate the possibility 
of the existence of an upstream wake-the L--wake component, in subcritical 
flows. Nevertheless, the two constraints, (24) and (26), now fail to determine 
uniquely the constants A,, ,463 and A,. Hence the complete solution in the 
present case has to be determined by matching the near-field solution at one point. 
That is, in addition to the gross quantities C,, and C,, the wakes bear invariantly 
the influence of the details of the near-flow field regardless of how far away from 
the body the similarity solutions are applied. It is interesting to note that A ,  
relates t o  C, alone 

(7- 1)M2, (yCE, 
= - 2[(y - 1) M2, + I] 
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For arbitrary Pr, there is also a third-wake component for the magnetic field 
which always travels doynstream. Only one among the three wake components 
gives rise to the solution that extends upstream when A2, +M2, < 1. 

If resistive diffusion alone is present, the wake is inviscid in nature. R,,, now 
plays the role of Re in the formulation and is absorbed in the stretched y co- 
ordinate. Hence for the inviscid wake the Ohm's law in its similarity form is 

With the right-hand sides of (21) and (23) replaced by zero, the solution for the 
inviscid wake is readily obtainable: 

A ,  is the constant of integration. 
As a whole, the downstream inviscid wake flips over to the upstream direction 

(with a possible variation in the amplitude A,) when the flow changes from super- 
critical to subcritical. The inviscid wake contributes nothing to the lift, to the 
moment, nor to the energy transfer, since the flow is symmetrical and thermally 
non-conducting. That C,, also vanishes would seem astonishing at the fist sight. 
However, this implies merely that C,, must be no greater than O(Rl1). This 
conclusion is consistent with an estimate based on the inviscid boundary-layer 
theory, assuming that this theory is uniformly valid over the entire body 
surface. 

In  this connexion it should be mentioned that an estimate made by Lary 
(1962) gives CDw = O(R;*). This was based on the observation that the rate 
of energy dissipated in joule heating is of this order. The apparent conflict 
between our estimate and his has not yet been explained. It may imply that the 
boundary-layer theory cannot be valid over the whole body, and that a pressure 
drag of O(R;J) necessarily occurs. Furthermore there may appear in the flow 
field a non-diffusive 'vortex trail' which extends indefinitely downstream, 
similar to what Tamada (1962) has described. If a vortex trail exists, the 
linearized treatment will not hold there. In  any case the detailed description 
of the wake for a particular configuration calls for matching to the near-flow 
field solution, and the present treatment of the wake is valid for regions where 
the perturbations are small. 
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4. Conclusions and remarks 
The possibility of an upstream wake in aligned-fields magnetogasdynamic 

flow past obstacles has been considered. The upstream wake occurs invariably in 
subcritical-flow r6gimes for ideal gases with arbitrary Pr, and with PT, infinite, 
of the order of one, or equal to zero. In  the incompressible limit the transition of 
the downstream wake to upstream and vice versa is again predicted to take place 
at the Alfv6n point, in full agreement with previous work on incompressible flows. 
The similarity solutions indicate explicitly the parabolic growth of aligned-fields 
magnetogasdynamic wakes, and hence justify a posteriori the basic postulate 
that the variation of the total pressure along wakes is insignificant. The procedure 
employed here in obtaining solutions is equivalent to the method of superposing 
the elementary solutions of individual diffusion operator in equations (15), (17), 
or (19). In general, the number of wake components presented in the solution is 
equal to the number of diffusive properties that the gas is assumed to possess, and 
only one wake component is capable of travelling upstream when the flow 
becomes subcritical. 

A striking effect of compressibility is that C,, the rate of net energy transfer 
between the body and the gas, has a profound influence on the structure of 
aligned-fields magnetogasdynamic wakes. By adjusting C, properly, the up- 
stream wake can be made to vanish in subcritical flows involving gases of infinite 
Pr,. Consequently, the necessary and sufficient correspondence between the 
presence of the forward, degenerate wave (as can be seen from the Friedrichs 
pulse diagram) and the appearance of the upstream wake (Sears 1960) is strictly 
valid for the inviscid aligned-field magnetogasdynamic wake. 

The author is greatly indebted to Prof. W. R. Sears for suggesting this investi- 
gation and for his guidance through its course. This work was supported partly 
by Grant AF-AFOSR-62-201, which is monitored by the Mechanics Branch of 
the Office of Scientific Research, USAF. 
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